END EFFECTS IN MAGNETOHYDRODYNAMIC CHANNELS
AT FINITE MAGNETIC REYNOLDS NUMBERS

V. F. Vasil'ev and I. V., Lavrent'ev

The effects of the magnetic Reynolds number have been examined via the distribution of the
magnetic fields induced by the motion of a medium in a rectangular channel with conducting
walls in the presence of an inhomogeneous magnetic field; the effects of wall conductivity
and geometry of the external field are also examined as regards the distribution of the in-
duced currents, the Joule loss, and the electric and magnetic fields over the cross section,
The problem has previously been considered for a channel with insulating walls [1].

1. Consider a rectangular chamnel |x| < « , |y] < @ having thin conducting walls y = +a, in which
there flows a liquid (conductivity o) with a constant velocity V= (V, 0, 0) in the presence of an external
magnetic field Bg = (0, 0, Bg(x)). Currents are induced in the conducting medium, which produce a field By
satisfying

rotB; =pj, j/o=—vyp+V x(B,+ By (1.1)

Here ¢ is the electrical potential in the channel, and j is the current density, We also assume that
all quantities are independent of the z coordinate and thatj, = 0; then (1.1) gives Bj = (0, 0, Bix,y)). The
basis for this assumption in an actual situation must be demonstrated in each particular case (see section?2).
Then it follows from (1.1) that Bj(x,y) should satisfy

#B, | #B, 0B, oB,
T tap Y =G @2

The boundary conditions for Bj(x,y) can be found via Shercliffe's boundary conditions [2] for the poten-
tial at the inside of a thin conducting wall

o & '
%i%?TE;:V[BE(w)—[-BZ—(x)] for y=+a 1.3)

This gives, from (1.1) after integration with respect to x and use of B; = jx = 0 for x = oo, that the
boundary condition for Bj is

t 0B,
Bli%--aTZO for yzia (14)

We use the dimensionless variables
=z/a Yy =yla J=0cVBj° ¢ = BVa¢°
B; = Bb(z°, y°), B, = Bf(z°)

and omit for simplicity the subscript zero in the dimensionless quantities to get the following boundary-
value problem from (1.2) and (1.4}:

b | &% b a
a?‘}'%?}‘z—ﬂm'ﬂzﬂm‘a—i' (Rm = PsVa) (1.5)
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Here B is some basis magnitude of the magnetic field, oy and t are the conductivity and thickness of
the wall, and Ry, is the magnetic Reynolds number,

The solution to (1.5) can be constructed as a trigonometric series
b(z,y) = 2 Auby (@) cOSpny (1.6)
n=1
where the sum is taken over all nonnegative roots of

dpy, tg pp =1 (1.7)

where cos upy forms a complete system of functions orthogonal in the range y€[—1.1]. Then (1.5) and (1.6)
are used with the orthogonality of the cosupny to get

- -0
bo(z) = e+ i gi— e+ dy |- e‘“xxj. —Z—i— e~ dy (1.8)
4R sinp,

(2, + sin 2 ) VW ’ 2’1’4_« =R, + VRmZ _[_4”“2

n=

The above solution to (1.5) can be used to give the distribution of the electrical potential and the Joule
heating. In (1.1) we put the potential as zero at x = +«, and integration with respect to x gives

1 ¢ ob(e,
0@, y) = — 5 S—%—yldm 1.9)

m

The Joule heat is determined as the work done by the Lorentz force in unit time*

Q= § dz \ (Bxj) Vdy (1.10)

We substitute (1.1) and (1.5) into (1.10) and integrate by parts to get an expression for the dimension-
less Joule dissipation

Q i sin®p, ¢ df
=2 2 1.11
q cE2 Snz_‘ll w (zp‘n L sin 2p'n) (Rmz__l_ 4“'112)1/2 _Sw dz bnd.l' ( 1 )
E =2BVa

2. A more or less realistic model is needed to establish the effects of Ry, 0, and the field distribu-
tion. Usually the pipe lies halfway between the poles of an electromagnet and the width of the pipe is sub-
stantially greater than the height. Also, we can assume closely that By = (Bgx (X, 2), 0, Bgz(x, z)) if the
width of the poletips exceeds the pipe width by not less than the working gap.

Moreover, the z dependence of B can be neglected and one can assume Bgy ~ 0 if the pipe height is
small relative to the gap. Then the distribution of the external magnetic field will correspond to that chosen
in section 1. '

It is far more complicated to consider the magnetic field of the induced currents. For the part of the
pipe in the magnet we can assume that B; is independent of z and that By = By, = 0 if the poletips have in-
finite permeability. This is not obvious for the channel zone outside the magnet gap because the fields of
the eddy currents at the inlet and outlet will be closed only partly through the iron, which makes Bj, de~
pendent on y and z, while By, and Biy cease to be zero.

*All quantities in (1.10) are dimensional.

360



This position becomes more difficult as Ry, increases, particularly as regards the outlet; the induced
magnetic field appears in the boundary conditions at the walls, and the problem becomes unclosed. The as-
sumptions of section 1 and of (1.4) can be tested only by experiment or simulation, as an analytic solution
is virtually impracticable,

The assumptions of section 1 and the solution apply when the walls perpendicular to the external mag-
netic field have ideal magnetic permeability or the poletips extend to infinity on both sides along the flow.
We assume in future that this is so, but on the basis that the external magnetic field is specified by a rela-
tion that truly represents the distribution along the x axis.

Let the field be given in the form of [3]

1— diexpvi(|z]—c) for |z|<e (2.1)
f(-Z)={A2eXP,V2(C_[$” for |z{>¢

The values

A =047, A, =083, v, =5.29/28,, v, =4.07/20,, 6, =58/2a, c=h/a

correspond to the real fall in the field.

Here 6 is the pole gap and 2X is the length of a poletip. Then (1.6), (1.8), and (2.1) give the distribu-
tion of the induced magnetic field as

sinp cosp b, (%)

b(z,y)=4Rn D)

nmy Gy sin2p) (B2 4 A, %) (2.2)
o ovive (R 2 4”71,2)’/2 exp [+ v2 (z = ¢)] Vivz eXp (— 7.¢) V1vs eXp (7_.0) _ 2vivey , exp (— vic)
by (z) = 4= (Vi Vo) (Va F T) (Ve F Ti) [ vi—714) (v2 -+ Ti) (v1 - Ty (va— Ty) (v1 4 va) (vi2— 1.5 ] OXP V=¥

Here the upper sign corresponds to x€ (—e, —c], and the lower one to x€ [c,® )

b (2) = 4=

vive (R,,2+ @nz)’/z exp [T vi(z +¢)] __ vivaexp [ty (x & o)l viveexp (F 1,0} __ 2viver, exp (— vic)
] [ = ~ ] eXp Y2

[T Y L S B T I mEg) = MF1)MET) v =19
Here the upper sign corresponds to x€ [¢, 0], and the lower one to x€ [0, c].

Figure 1 shows the induced-current pattern for d = 1 and Ry, of 0, 2, 10, and 50 as given by (2.2).
Figure 1 shows that the eddy currents at the inlet and outlet for Ry, = 0 are distributed symmetrically with
respect to the center of the magnet. As Ry, increases, the boundary to these currents moves along the
direction of motion, and the inlet eddy begins to expand, its center shifting toward the middle of the magnet
and attaining it for Ry, =« . The outlet eddy also shifts down the flow as Ry, increases and recedes to in-
finity as Ry, — «.

Formula (2.2) shows by direct integration that the total flux for the induced field is zero for all Bm
and d, with the fluxes due to the live eddies equal in magnitude but opposite in sign; they increase with Ry
and for Ry =« become equal to the external flux, while the field of the outlet eddy and the total resultant
field become zero. Figure 1 also shows that the lines of the induced field become straighter as Ry in-
creases for a given d, and the induced field ceases to be dependent on y for Ry ==.

In (2.2) we let Ry, tend to infinity and expand unity as a series in cos Uny:

> sin W, cosp y
=4 2 2, - sin 2 : 2.3)

=1

which allows us to show that the induced field becomes equal in magnitude and opposite in sign to the applied
field, which is independent of y. A similar picture is seen as d increases for any Ry, which follows from
(2.2); d = gives up = M, n =0, 1, . . ., and all the terms vanish except that with Uy = 0, which makes the
field independent of y.

Figure 2 shows the distribution of the resultant magnetic field b, = f + b at the middle of the pipe for
¢ =2and 6 x = 0.75 for various Ry, and d. Curves 1(0), 2(1), 4(2), 6(5R 9(10), and 9(50) correspond to d = 0
while curves 10(1), 11(2), 12(5), 13(10), and 14(50) correspond to d = «, and curves 3(1), 5(1), and 7(1) cor-
respond to d of 0.5, 1.0, and 5.0. The value of R is given in parentheses with each curve number.
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The extent to which the field is carried down the flow direction increases with Ry; if d = 0, the field
at the inlet is weakened while that at the outlet is strengthened. This tendency persists as 4 inereases,
with an overall reduction in the resultant magnetic field. (The field at the inlet becomes negative.) This re-
veals clearly the demagnetizing action of the induced currents; the resultant field near the poletips de-
creases as Ry, increases and fends to zero as Ry —~«=, )

3. Consider ¢ x,y). We substitute (2.2) into (1.9) and get
-~ B, sinpe, sinp, y ity (1o —7v,)expva(c £ x)
¢z, y)=8 D (Gu, T+ R 7. (2, Fsin2h,) {2 T v R ™ ET) =

n=1
ViVeY,. exp (— vic) vivash v e Yy (V1— va) viveexp (-7 ¢
Iz [(Vl Vo) (v — ) mx T (vt o) e — »riz) o — 7.5 ] exXp Y4& }
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The upper sign corresponds to x€ (—», —¢), and the lower

1.5 7z
q - one to x€ [c, «©)
=2 % |~ ot i 3 5 2y%e
% o sinp sin py (4p > 4+ R 2)
12 { ¢ (x: y) =8 El (4an T ng)x/z (2”1" ¥ sin Z}Ln) { 2p’n
) " vivapt, exp Y_ (¢ + z) viveph exp 1, (z—¢) Volk,, €XP (— Vic)
/ _—T T mFom—0 WEmInm T ut
29 - viexpt .« (4,2 + R, )" exp (F viz)
// X | a7 2R T ML 75
- 1 - -
fn=0 /r"’/
0 / The upper sign corresponds to x€ [—¢, 0], and the lower
< oo /0 15|8 one to x€ [0, c].
L = -
o= — T Figure 3 shows the potential along the wall for ¢ = 2 and
a3 7 = - :
75 i o 5 8% =0.75 for various d and Ry, . il‘he curve numbers are from [3],
P = L] with the corresponding d and Ry, in parentheses: 1(0,1), 2(0.5, 1),
—5 s 3(1, 1), 4(5, 1), 5(, 1), 6 (1, 0), 7 (1, 1), 8(1, 2), 9(1, 5), 10(1, 10),
o— ; = 111, 50), 12(1, »). Consider the effects of Ry, on the sensitivity
Fig. 4 8= ¢(0, 1), which characterizes the operation as a flowmeter. A

fairly detailed discussion has been given [3] for the effects of 5,
¢, and d on the sensitivity.

The calculations show that, in the general case (Ry, # 0),the qualitative arguments [3] on S remain
correct here., Figure 3 shows that S and the maximum wall potential decrease as Ry, increases, and the
sensitivity may be increased by taking the signal from the wall at (x4, 1), where x,, = 0 and increases with
Bm &m = 0 for Ry = 0).

4. Consider now the effects of Ry, o, and field distribution on the Joule loss, The full expression
is very inconvenient when the external field is defined by (2.1), and we give the simpler form

1 for [z]<er
f1($)={expv(c1_[z|) for |z]>ea (4.1)

If ¢, is deduced from f;(c) = f(c) and we put v = v, [see (2.1)], calculation shows that the Joule
losses differ by not more than 3% for external fields of (4.1) and (2.1). The broken line in Fig, 2 shows the
field of (4.1) for c; =1.74.

Then (4.1) gives the dimensionless Joule dissipation as

= 22 - sintp, BT —T)— VR, exp(2r.e)  exp(—21,0)
g=2v Zl B, (20, +sin2p ) (1, —1.) [ ]

= YT G—1F Ty “.2)

The dependence of q on v ~! for the various Ry, is as for Ry = 0 [3], i.e., the dissipation decreases as
v * increases (q — 0 for v — 0), Table 1 gives results from (4.2) for the dimensionless Joule loss for vari-
ous Rm, d, and ¢, for the cases 6, = 0 in the first line (v ==, field given as a step ) and 6, =0.75 (v =
0.714) for the second,

-1

In view of the above statement, for simplicity we consider only the case v =, when (4.2) becomes

i sin?p [2— exp (2v_e1) — exp (— 27,61)]

WO, TS, — 10 (4.3)

g=2

n=1

All subsequent conclusions from (4.3) are correct for all ¥ # «, as one can see from Table 1.

Figure 4 shows q as a function of d, which characterizes the effects of wall conductivity, for various
R and ¢, as deduced from (4.3). We see that Ry, and wall conduction have different effects for ¢, = «,
since g —~0 as 1/Ryy, for Ry, — «, while increase in d causes q to increase monotonically and q — 1/Rm as
d —, which follows from (4.3); the q(d) dependence becomes weaker as Ry, increases, and q(d) attains its
maximum value go) = Rm"1 the earlier the larger Ryy,.
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TABLE 1.

Rm c d=0 d=005 d=10 d=20 d=5.0
1.0 0.2602 0.4004 0.4724 0.5563 0.6687
1.0 0.0815 0.1747 0.2401 0.3429 0.5315
0 1.74 0.2703 0.4445 0.5464 0.6843 0.8987
1.74 0.0825 0.1783 0.2555 0.3781 0.6218
8.0 0.2714 0.4520 0.5750 0.7626 1.4532
8.0 0.0826- 0.4800 0.2614 0.3996 0.7204
1.0 0.2451 0.3521 0.3929 0.4256 0.4450
1.0 0.0778 0.4512 0.1940 0.2373 0.2652
1.0 1.74 0.2568 0.3915 0.4518 0.5044 | 0.5336
1.74 0.0794 0.1603 0.2120 0.2684 0.3085
8.0 0.259 0.4104 0.4973 0.6040 0.7270
8.0 0.0797 0.1652 0.2276 0.3149 0.4341
1.0 0.2110 0.2670 0.2751 0.2735 0.2635
1.0 0.0639 0.1134 0.1266 0.1279 0.1109
2.0 1.74 0.2254 0.3003 0.3450 0.3114 0.2907
1.74 0.0747 0.1252 0.1445 0.1500 0.4299
8.0 0.2308 0.3322 0.3745 0.4081 0.4040
8.0 0.0729 0.1369 0.1745 0.2099 0.2194
1.0 0.1216 0.1241 0.1481 0.1117 0.4056
1.0 0.0411 0.0504 0.0409 0.0330 0.0233
5.0 1.74 0.1352 0.1400 0.1316 0.1213 0.1105
1.74 0.0463 0.0552 0.0502 0.0406 0.0278
8.0 0.1493 0.1783 0.1787 0.1680 0.1427
8.0 0.0516 0.0786 0.0850 0.0782 0.0569
1.0 0.0633 0.059% 0.0563 0.0537 0.0516
1.0 0.0194 0.0172 0.0131 0.0096 0.0063
10 1.74 0.0705 0.0654 0.0607 0.0565 0.0530
1.74 0.0235 0.0208 0.0166 0.0120 0.0076
8.0 0.0864 0.0895 0.0833 0.0741 0.0627
8.0 0.0304 0.0387 0.0352 0.0277 0.0163
1.0 0.0117 0.0106 0.0103 0.0102 0.0101
1.0 0.0019 0.0010 0.0007 0.0004 0.0003
50 1.74 0.0125 0.0125 0.0106 0.0103 0.0101
1.74 0.0024 0.0024 0.0009 6.0006 0.0003
8.0 0.0158 0.0133 0.0122 0.0113 0.0106
8.0 0.0052 0.0035 0.0024 0.0015 0.0008

However, q(d) becomes more complicated for finite c¢;, and for Ry, # 0 there is always a ¢y (which in-
creases with Ryy,) q(d) has a maximum, with the corresponding d decreasing as Ry, increases or as ¢y decreases.
We shall see below that ¢ — 0.5/Rpy, as d — = for ¢y = «.

This means that, in real cases, where the field size is always finite, one needs to be very careful in
using formulas for the Joule loss derived for a semiinfinite field. One can neglect the interaction of the in-
let and outlet currents for ¢; > 2 if d = 0 and Ry, = 0, and the Joule loss can be determined as twice that for
a semiinfinite field; but this cannot be done if Ry, and d differ from zero, because the asymmetry in the re-
sultant field becomes important, and the more so the greater Ry, or d (see section 2). For instance, there
is not more than 5% difference in the q between ¢; =« and ¢; = 1 if Ryy; =d = 0, whereas d = 0 and Ry, = 50
makes the Joule loss for ¢; = » more than 1.5 times that for ¢, =1 and more than twice that for Ry, = 0 and
d =10,

Figure 4 shows that one can use the loss formula found for a semiinfinite field down to a lower limit
in ¢, that increases with Ry, and with d.

We derive an approximate formula for g before we consider the analytically similar behavior in rela-
tion to ¢4, Ry, and d. From (2.3) with y = 0 and (4.3) we get

2 -—exp (Hm —_ VRmz + dpo?) oo —exp(— R, — ]/Rm2 + 4io?) o2
2 (Rm2 + 4!-‘-02)]/2 (4 .4)

The q of (4.3) and (4.4) differ by not more than 1% for Ry, and d > 1, while @.4) gives values slightly"
larger than those of (4.3) for Rm and d < 1. (The maximum difference is 14% for Ryy =d =0.) Figure 5

shows u(d); (1.7) shows that u;= d-!ford> 10, in which case (4.4) gives, for Ry, and ¢y such that exp
(—2Rmey) X 1,
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2—exp(—2¢ [ R d)

e = R eiap” (4-5)
\ The exponential term contains all the ¢; dependence; if ¢; = » for finite
26— Rp and d, the numerator in (4.5) equals two, and q —1 /Ry, for d —« and for
™~ finite Ryp;if ¢y # w and d —~, q —~ 0.5/Rpy,. From (4.5) we get the lower limit
I— to ¢, for which one can use the formula for the Joule loss in the semiinfinite
P a case, for which we must have

2 & & &
Fig. 3 exp(— 20y | Ropd) << 1
ie., 2¢; /Ry d must be greater than some number dependent on the required accuracy, so ¢; > 0.5ARyyd.

Preliminary experiments and the results of [4] imply that the induced currents have less demagnetiz-
ing effect than the above theoretical analysis would imply, which occurs because (see section 2) the mag-
netic flux from the induced currents passes outside the magnetic circuit. Also, the solution takes no ac-
count of the shunting currents in the conducting walls or of the velocity profile in the pipe.

We are indebted to A. B. Vatazhin for his interest.

LITERATURE CITED

1. R. A. Boucher and D. B. Ames, "End effect losses in dc magnetohydrodynamic generators," J. Appl.
DPhys., 32, No. 5, 755-9 (1961),
2. J. Shercliffe, Theory of Electromagnetic Flow-Measurements, Cambridge University Press (1963).

3. V. F.Vasil'ev and I. V. Lavrent'ev, "A longitudinal boundary problem for the electric field in a MHD
pipe with conducting walls,” Mag. Gidr., No. 2 (1970).

4, G. A. Baranov, V. F, Vasil'ev, V. A. Glukhikh, B. G. Karasev, I. R, Kirillzhov, and I, V. Lavrent'ev,
"Experimental studies of liquid-metal MHD generators," Electricity from MHD, Vol, 3, Vienna (1968).

365



